Optimizing pH response of affinity between protein G and IgG Fc: how electrostatic modulations affect protein-protein interactions.

نویسندگان

  • Hideki Watanabe
  • Hiroyuki Matsumaru
  • Ayako Ooishi
  • Yanwen Feng
  • Takayuki Odahara
  • Kyoko Suto
  • Shinya Honda
چکیده

Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Dietary Crude Protein Level on UT-B Expression and Nitrogen Efficiency in Growing Baluchi Male Lambs Fed Low or High Concentrate Diets

An experiment was carried out to evaluate how interactions between forage to concentrate ratio and dietary crude protein level may alter nitrogen efficiency and UT-B expression in growing Baluchi male lambs. Four Baluchi male lambs [30 ± 2 kg BW] were used in a 4 × 4 latin square design with 28-d periods and a 2 × 2 factorial arrangement of dietary treatments. The treatments fed forage: concent...

متن کامل

Computational design of a pH-sensitive IgG binding protein.

Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed bi...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Conformational plasticity of RNA for target recognition as revealed by the 2.15 Å crystal structure of a human IgG–aptamer complex

Aptamers are short single-stranded nucleic acids with high affinity to target molecules and are applicable to therapeutics and diagnostics. Regardless of an increasing number of reported aptamers, the structural basis of the interaction of RNA aptamer with proteins is poorly understood. Here, we determined the 2.15 Å crystal structure of the Fc fragment of human IgG1 (hFc1) complexed with an an...

متن کامل

Fusion of a Short Peptide that Binds Immunoglobulin G to a Recombinant Protein Substantially Increases Its Plasma Half-Life in Mice

We explore a strategy to substantially increase the half-life of recombinant proteins by genetic fusion to FcIII, a 13-mer IgG-Fc domain binding peptide (IgGBP) originally identified by DeLano and co-workers at Genentech [DeLano WL, et al. (2000) Science 287:1279-1283]. IgGBP fusion increases the in vivo half-life of proteins by enabling the fusion protein to bind serum IgG, a concept originall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 18  شماره 

صفحات  -

تاریخ انتشار 2009